Красноломкость - свойство металлов давать трещины при горячей обработке давлением (ковка, штамповка, прокатка) в области температур красного или жёлтого каления (850-1150°C).
Хладноломкость - склонность металла растрескиваться и ломаться при холодной механической обработке.
Нержавеющая сталь (коррозионностойкие стали) - легированная сталь, устойчивая к коррозии в атмосфере и агрессивных средах.
1. Коррозионностойкие стали - от них требуется стойкость к коррозии в несложных промышленных и бытовых условиях (из них можно изготавливать детали оборудования для нефтегазовой, легкой, машиностроительной промышленности, хирургические инструменты, бытовую нержавеющую посуду и тару).
2. Жаростойкие стали - от них требуется жаростойкость, то есть стойкость к коррозии при высоких температурах в сильно агрессивных средах, например, на химических предприятиях.
3. Жаропрочные стали - от них требуется жаропрочность, то есть хорошая механическая прочность при высоких температурах.
1. Хромистые
2. Хромоникелевые
3. Хромомарганцево-никелевые
Стали марки AISI-304 -321 -316L относятся к хромоникелевым сталям, аустенитному классу высоколегированных сталей, образующих при кристаллизации преимущественно однофазную аустенитную структуру γ-Fe c гранецентрированной кристаллической (ГЦК) решеткой, которая сохраняет форму при охлаждении материала до криогенных температур. Содержание другой фазы - высоколегированного феррита (δ-Fe с объёмно-центрированной кристаллической (ОЦК) решеткой) изменяется от 0 до 10%.
Такие стали содержат 18-25% Сг (хрома) обеспечивающего жаро- и коррозионную стойкость, а также 8-35% Ni (никеля), стабилизирующего аустенитную структуру и повышающего жаропрочность, увеличивая пластичность и технологичность сталей в широком интервале температур.
Это позволяет использовать аустенитные стали в качестве коррозионностойких, жаропрочных, жаростойких, криогенных конструкционных материалов в химических, теплоэнергетических и атомных установках, где они подвергаются совместному сочетанию воздействия напряжений, высоких температур и агрессивных сред.
Обозначения стандартных нержавеющих сталей по AISI включают в себя три цифры и следующие за ними в ряде случаев одну, две или более буквы. Первая цифра обозначения определяет класс стали. Так, обозначения аустенитных нержавеющих сталей начинаются с цифр 2ХХ и 3ХХ, в то время как ферритные и мартенситные стали определяются по классу 4ХХ.
xxxL |
Низкое содержание углерода <0,03% |
xxxS |
Нормальное содержание углерода <0,08% |
xxxN |
Добавлен азот |
xxxLN |
Низкое содержание углерода <0,03% + добавлен азот |
xxxF |
Повышенное содержание серы и фосфора |
xxxSe |
Добавлен селен |
xxxB |
Добавлен кремний |
xxxH |
Расширенный интервал содержания углерода |
xxxCu |
Добавлена медь |
Основным преимуществом сталей аустенитного класса AISI-304 -321 -316L являются их высокие эксплуатационные характеристики (прочность, пластичность, коррозионная стойкость в большинстве рабочих сред) и хорошая технологичность. Поэтому аустенитные коррозионностойкие стали нашли широкое применение в качестве конструкционного материала в различных отраслях машиностроения.
Теоретически изделия из аустенитных нержавеющих сталей при нормальных условиях - немагнитные, но после холодного деформирования (любой механической обработки) могут проявлять некоторые магнитные свойства (часть аустенита превращается в феррит).
Европейская |
Аналоги стали |
||||||
UNS |
SIS |
BS |
JIS |
ГОСТ |
AISI |
Германия |
|
1.4301 |
S30400 |
2332/33 |
304S31 |
SUS304 |
08X18H10 |
304 |
X5CrNi1810 |
1.4404 |
S31603 |
2348 |
316S11 |
SUS316L |
03X17H13M2 |
316L |
X2CrNiMo17-12-2 |
1.4541 |
S32100 |
2337 |
321S31 |
SUS321 |
08X18H10T |
321 |
X6CrNiTi18 -10 |
Аустенитная, с низким содержанием углерода. Модификация стали AISI-304 имеет широкую сферу применения и большой спрос у потребителей, поскольку является универсальным продуктом. AISI-304 обладает лучшими (относительно других марок) показателями по свариваемости, сопротивлению коррозии и окислению. Сталь этой марки обладает отличными низкотемпературными свойствами и одновременно рекомендована к использованию при высоких температурах. Среди множества других сплавов ее также выделяют механические свойства, химический состав и относительно невысокая стоимость. AISI 304 обладает высокой пластичностью для таких операций механической обработки как прокат, волочение.
Сталь аналогичная AISI-304 с очень низким содержанием углерода и добавлением молибдена около 2,5%. Стальной сплав AISI-316L представляет собой оптимизированный вариант версии AISI-304, который дополнительно обогащен молибденом. Для этого сплава характерно более высокое содержание никеля. Данная версия стали имеет в разы большую способность к сопротивлению коррозии в агрессивных средах. В условиях паров уксусной кислоты, едкого хлора или морской воды добавление молибдена позволяет стали приобрести устойчивость к различным видам коррозии, среди которых можно назвать, в том числе, питтинговую (точечную) и щелевую. Более низкая общая коррозионная устойчивость в относительно малоагрессивных средах позволяет показывать прекрасное сопротивление коррозии в загрязненном воздухе и в приморской зоне.
Хромоникелевая сталь с добавкой титана (Ti). Модификация стали AISI-321 обладает отличными характеристиками устойчивости к коррозии и высоким температурам, однако при этом она недостаточно сопротивляется воздействию серосодержащих сред. Данную сталь рекомендуется использовать при температурах от 600°С до 800°С. Стоит отметить, что срок ее службы может быть очень длительным. Сталь AISI321 не подвержена межкристаллитной коррозии, поскольку в ее составе есть титан, применяемый для придания сплавам высокой твердости. Особое внимание стоит обратить на то, что в сваренном состоянии сталь AISI-321 не должна применяться в чрезмерно кислых агрессивных средах. Сталь более устойчива к механическому воздействию в отличии от AISI-304 -316L.
Это наиболее распространенная в применении сталь. Она обладает высокой пластичностью, что позволяет широко использовать AISI-304 в штампованных изделиях с высоким уровнем вытяжки и сложным рельефом, например при изготовлении моек, раковин и тому подобных предметов быта. Благодаря низкому содержанию углерода сталь AISI-304 обладает улучшенными сварочными характеристиками.
Пищевая промышленность: изготовление различных емкостей, передающих устройств. Изготовление дымоходов, систем дымоудаления и вентиляции. Практически во всех молочных и пивоваренных производствах используется сталь AISI-304 в качестве основного материала для изготовления оборудования, инструмента и приборов.
Вторыми по значимости отраслями промышленности, которые без преувеличения не могут обойтись без стали AISI-304, можно назвать фармацевтическую и медицинскую. В этих отраслях AISI-304 применяют при производстве медицинского и фармакологического оборудования и инструмента, имплантатов и медицинской мебели.
Самый большой объем потребления стали AISI-304 приходится на нефтехимические и химические производства. Благодаря высокой сопротивляемости агрессивным средам трубы из AISI-304 в этих отраслях применяются повсеместно. Также, в нефтегазовой сфере большой объем потребления приходится на производство скважинных фильтров, плоских щелевых решеток, плоских щелевых сит, которые изготавливаются из профилированной нержавеющей проволоки.
Из-за своего выдающегося сопротивления коррозии и окислению, выдающихся механических свойств и технологичности, AISI-316 применяется во многих секторах промышленности. Некоторые из них включают: баки и судна для хранения коррозионных жидкостей, специализированное промышленное оборудование в химическом, продовольственном, бумажно-целлюлозном, горнодобывающем, фармацевтическом и нефтехимическом секторах экономики, архитектурные конструкционные элементы, находящиеся в коррозионных средах.
Нержавеющая сталь AISI-321 применяется во многих областях производства.
Машиностроение и металлообработка: для изготовления деталей механизмов и машин.
Пищевая и химическая промышленность: для изготовления резервуаров и трубопроводов (труб и трубопроводной арматуры), контактирующих с кислыми и щелочными средами, в том числе, с продуктами питания.
Производство оборудования, работающего в диапазоне высоких температур: печной арматуры, теплообменников, корпусов тепловых и паровых котлов.
Нефтегазовая промышленность: для производства емкостей и цистерн высокой прочности, предназначенных для хранения веществ (сжатых и сжиженных газов) под давлением.
Монтаж сварных конструкций (опор, колонн, балок), взаимодействующих с агрессивными средами.
С увеличением содержания углерода в структуре стали увеличивается количество цементита - очень твердой и хрупкой фазы. Твердость цементита превышает твердость феррита примерно в 10 раз, поэтому прочность и твердость стали растут с повышением содержания углерода, а пластичность и вязкость, наоборот снижаются.
Содержание кремния как технологической примеси обычно не превышает 0,37%. Кремний как технологическая примесь влияния на свойства стали не оказывает. В сталях, предназначенных для сварных конструкций, содержание кремния не должно превышать 0,12-0,25%.
Марганец вводят в стали как технологическую добавку для повышения степени их раскисления и устранения вредного влияния серы. Марганец считается технологической примесью, если его содержание не превышает 0,8%. Марганец как технологическая примесь существенного влияния на свойства стали не оказывает.
Пределы содержания фосфора как технологической примеси составляют 0,025-0,045%. Фосфор, как и сера, относится к наиболее вредным примесям в сталях и сплавах. Увеличение его содержания, даже на доли процента, повышая прочность, одновременно повышает текучесть, хрупкость и порог хладноломкости, снижает пластичность и вязкость. Вредное влияние фосфора особенно сильно сказывается при повышенном содержании углерода.
Вредная примесь. Повышение содержания серы существенно снижает механические и физико-химические свойства сталей, в частности, пластичность, ударную вязкость, сопротивление истиранию и коррозионную стойкость. При горячем деформировании сталей и сплавов большое содержание серы ведет к красноломкости. Кроме того, повышенное содержание серы снижает свариваемость готовых изделий.
Азот увеличивает прочность и твердость стали, но снижает пластичность. Повышенное количество азота вызывает деформационное старение. Старение медленно развивается при комнатной температуре и ускоряется при нагреве до 250°С.
Основной легирующий элемент, обеспечивающий коррозионную стойкость стали в любых средах, в том числе окислительных. Хром образует на своей поверхности защитную оксидную пленку и благодаря этому приобретает высокую химическую стойкость. При добавлении хрома в сталь с концентрацией не менее 11,7 % он прочно соединяется с железом и придает ему антикоррозионные свойства, причем эти свойства увеличиваются пропорционально содержанию хрома.
В сталях является элементом, способствующим образованию и сохранению аустенита. Никель повышает упрочняемость сталей. В комбинации с хромом и молибденом никель еще больше повышает способность сталей к термическому упрочнению, способствует повышению вязкости и усталостной прочности сталей. Растворяясь в феррите, никель повышает его вязкость. Никель увеличивает сопротивление коррозии хромоникелевых аустенитных сталей в неокисляющих кислотных растворах.
Молибден повышает коррозионную стойкость сталей и поэтому широко применяется в высоколегированных ферритных нержавеющих сталях и в хромоникелевых аустенитных нержавеющих сталях. Высокое содержание молибдена снижает склонность нержавеющей стали к точечной (питтинговой) коррозии. Молибден оказывает очень сильное упрочнение твердого раствора аустенитных сталей, которые применяются при повышенных температурах.
Титан повышает прочность и плотность стали, способствует измельчению зерна, является хорошим раскислителем, улучшает обрабатываемость и сопротивление коррозии.
Марка стали AISI |
Химический состав, % | |||||||||
C | Si | Mn | P | S | N | Cr | Mo | Ni | Ti | |
304 | <0,07 | <1,00 | <2,00 | <0,045 | <0,015 | <0,011 | 17,00-19,50 | 8,00-10,50 | ||
316 L | <0,030 | <1,00 | <2,00 | <0,045 | <0,015 | <0,011 | 16,50-18,50 | 2,00-2,50 | 10,00-13,00 | |
321 | <0,08 | <1,00 | <2,00 | <0,045 | <0,015 | 17,00-19,00 | 9,00-12,00 | <0,70 |
Свойства | Eдиница измерения | AISI 304 | AISI 316L | AISI 321 |
Предел текучести, Rp | N/mm² | 190 | 200 | 190 |
Временное сопротивление разрыву, Rm | N/mm² | 500-700 | 500-700 | 500-700 |
Относительное удлинение, А100 | % | 45 | 40 | 45 |
Твердость | HRC | 215 | 215 | 215 |
Плотность | кг/м³ | 7,93 | 8,0 | 7,9 |
Температура плавления | °С | 1 420 | 1 440 | 1 420 |
Удельная теплоемкость | J/kg∙K | 500 | 500 | 500 |
Тепловое расширение | W/m∙K | 15 | 15 | 15 |
Электрическое сопротивление | Ом | 0,73 | 0,75 | 0,73 |
Магнитная проницаемость | kA/m | 1,015 | 1,005 | 1,01 |
Модуль упругости, Е | MPa | 200 | 200 | 200 |
© PROFPROV.RU 2023. Все права защищены
К началу